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Definition

Let G be a group and V be a complex vector space. Then
ρ : G → GL(V ) is a representation if it is a homomorphism.
Denote a representation by the pair (ρ,V ).
A representation is irreducible if there are no non-trivial ρ-invariant
subspaces of V . I.E. for all U such that 0 6= U ( V . Write the set
of all equivalence classes (under some relation) of irreducible
representations of G as Ĝ .

Definition

Let p be some probability measure on a group G . We define the
Fourier transform of p at the representation (ρ,V ) by

p̂(ρ) =
∑
g∈G

p(g)ρ(g)
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Theorem (Fourier Inversion Theorem)

Let p be a probability measure on a group G and p̂ be its Fourier
transform. Then

p(g) =
1

|G |
∑
ρ∈Ĝ

dρtr(p̂(ρ)ρ(g−1))

Theorem (Plancherel’s Theorem)

Let p and q be some probability measures on a group G . Then∑
g∈G

p(g−1)q(g) =
1

|G |
∑
ρ∈Ĝ

dρtr(p̂(ρ)q̂(ρ))
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We can show that the matrix associated to any representation
(ρ,V ) is unitary. Thus

ρ(g−1) = ρ(g)−1 = ρ(g)∗

where ∗ represents the adjoint.

By taking q(g) = p(g−1)∗ we get

Theorem (Plancherel (kinda))∑
g∈G

|p(g)|2 =
1

|G |
∑
ρ∈Ĝ

dρtr(p̂(ρ)p̂(ρ∗))
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Theorem

Let p be some probability measure on a finite group G and u be
the uniform measure. Then

|G |
∑
g∈G

|p(t)(g)− u(g)|2 =
∑∗

ρ∈Ĝ

dρtr(p̂(ρ)(t)(p̂(ρ)(t))∗)

where the sum is over all non-trivial irreducible representations.
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We can use this to bound total variation distance with the simple
observations that

‖p(t)(x)− u‖2TV ≤
|G |
4

∑
g∈G

|p(t)(g)− u(g)|2

‖p(t)(x)− u‖2TV ≥
1

4

∑
g∈G

|p(t)(g)− u(g)|2

by the Cauchy-Schwarz inequality and Pythagoras’ theorem
respectively.

These give

1

4|G |
∑∗

ρ∈Ĝ

dρtr(p̂(ρ)(t)(p̂(ρ)(t))∗) ≤ ‖p(t)−u‖2TV ≤
1

4

∑∗

ρ∈Ĝ

dρtr(p̂(ρ)(t)(p̂(ρ)(t))∗)

or, slightly more vaguely,

‖p(t) − u‖2TV �
∑∗

ρ∈Ĝ

dρtr(p̂(ρ)(t)(p̂(ρ)(t))∗)
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Definition

Suppose that G is a group, V is a finite-dimensional vector space
and (ρ,V ) is a representation of G . For each g ∈ G consider the
matrix representation of ρ(g), denoted ρ(g), relative to some fixed
basis in V . Define a function χ : G → C by χ(g) = tr ρ(g) for all
g ∈ G . χ is called the character of (ρ,V ).

It turns out that, if G is Abelian, the characters form a group. Call
this the dual group of G and write it as G̃ . Moreover G̃ ∼= G .

Definition

Let G be a group and χ be the character of some irreducible
representation of G . Then define the Fourier transform of some
measure p at χ as

p̂(χ) =
∑
g∈G

p(g)χ(g)

Stijn Hanson (York) Group Representation Theory on Mixing Times



Group Representations
Characters

Example

Definition

Suppose that G is a group, V is a finite-dimensional vector space
and (ρ,V ) is a representation of G . For each g ∈ G consider the
matrix representation of ρ(g), denoted ρ(g), relative to some fixed
basis in V . Define a function χ : G → C by χ(g) = tr ρ(g) for all
g ∈ G . χ is called the character of (ρ,V ).

It turns out that, if G is Abelian, the characters form a group. Call
this the dual group of G and write it as G̃ . Moreover G̃ ∼= G .

Definition

Let G be a group and χ be the character of some irreducible
representation of G . Then define the Fourier transform of some
measure p at χ as

p̂(χ) =
∑
g∈G

p(g)χ(g)

Stijn Hanson (York) Group Representation Theory on Mixing Times



Group Representations
Characters

Example

Definition

Suppose that G is a group, V is a finite-dimensional vector space
and (ρ,V ) is a representation of G . For each g ∈ G consider the
matrix representation of ρ(g), denoted ρ(g), relative to some fixed
basis in V . Define a function χ : G → C by χ(g) = tr ρ(g) for all
g ∈ G . χ is called the character of (ρ,V ).

It turns out that, if G is Abelian, the characters form a group. Call
this the dual group of G and write it as G̃ . Moreover G̃ ∼= G .

Definition

Let G be a group and χ be the character of some irreducible
representation of G . Then define the Fourier transform of some
measure p at χ as

p̂(χ) =
∑
g∈G

p(g)χ(g)

Stijn Hanson (York) Group Representation Theory on Mixing Times



Group Representations
Characters

Example

From now on we will take G to be Abelian. Then G ∼= G̃ implies
that the collection (p̂(χ))χ∈G̃ is precisely the spectrum of p viewed
as a convolution operator.

Using this and

Theorem

ρ is an irreducible representation if and only if dρ = 1.

we get

|G |
∑
g∈G

|p(t)(g)− u(g)|2 =
∑∗

χ∈G̃

|p̂(χ)|2t
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Consider G = Zn. We know that G is Abelian and so there are n
irreducible representations given by

ρj(N) = (e2πijN/n)

for any N ∈ Zn, x ∈ C∗ and 0 ≤ j < n.

Their characters are

χj(N) = e2πijN/n

Consider the simple random walk where p(+1) = p(−1) = 1/2.
Then

p̂(χj) =
1

2
(χ(+1) + χ(−1))

=
1

2

(
etπij/n + e−tπij/n

)
= cos(2πij/n)

Thus

‖p(t) − u‖2TV �
n−1∑
j=1

| cos(2πij/n)|2t
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